Mining Tree Patterns with Partially Injective Homomorphisms

Till Hendrik Schulz, Tamás Horváth, Pascal Welke, and Stefan Wrobel

University of Bonn
The Two Most Common Pattern Matching Operators in Learning from Structured Data
Main Idea

The Two Most Common Pattern Matching Operators in Learning from Structured Data

Homomorphism between Relational Structures
Main Idea

The Two Most Common Pattern Matching Operators in Learning from Structured Data

Substructure Isomorphism between Relational Structures

Homomorphism between Relational Structures

Substructure Isomorphism between Relational Structures
Main Idea

The Two Most Common Pattern Matching Operators in Learning from Structured Data

- Substructure Isomorphism between Relational Structures
- Homomorphism between Relational Structures

ILP: Θ-Subsumption

- Partially Injective Homomorphisms

Schulz et al. (Bonn)
Main Idea

The Two Most Common Pattern Matching Operators in Learning from Structured Data

- Substructure Isomorphism between Relational Structures
- Homomorphism between Relational Structures

ILP: Θ-Subsumption

Special Case: Graphs

Schulz et al. (Bonn)
The Two Most Common Pattern Matching Operators in Learning from Structured Data

Homomorphism between Relational Structures

ILP: Θ-Subsumption

Special Case: Graphs

Substructure Isomorphism between Relational Structures

Homomorphism between Graphs

\oplus: polynomially decidable for many graph classes

\ominus: poor predictive performance

Schulz et al. (Bonn)
The Two Most Common Pattern Matching Operators in Learning from Structured Data

- **Substructure Isomorphism**
- **Homomorphism between Relational Structures**
 - **ILP: Θ-Subsumption**
 - **Special Case: Graphs**
 - **Homomorphism between Graphs**
 - \oplus: polynomially decidable for many graph classes
 - \ominus: poor predictive performance

- **Substructure Isomorphism between Relational Structures**
- **Graph Mining: Subgraph Isomorphism**
The Two Most Common Pattern Matching Operators in Learning from Structured Data

Homomorphism between Relational Structures

ILP: \(\Theta \)-Subsumption

Special Case: Graphs

Homomorphism between Graphs

\(+ \): polynomially decidable for many graph classes
\(- \): poor predictive performance

Substructure Isomorphism between Relational Structures

Graph Mining: Subgraph Isomorphism

Injective Homomorphism between Graphs

\(+ \): better predictive performance
\(- \): generally NP-complete
Homomorphism between Relational Structures

ILP: Θ-Subsumption

Special Case: Graphs

Homomorphism between Graphs

\oplus: polynomially decidable for many graph classes
\ominus: poor predictive performance

Substructure Isomorphism between Relational Structures

Graph Mining: Subgraph Isomorphism

Injective Homomorphism between Graphs

\oplus: better predictive performance
\ominus: generally NP-complete
Injective Homomorphism

Graph homomorphism:

H: G:

Subgraph isomorphism can be reduced to homomorphism:

Color all edges of \(H \) and \(G \) in blue (original edges)

Add to \(H \) red edges between all unconnected vertex pairs (constraint edges)

Connect all vertex pairs in \(G \) by a red edge

Red edges in \(H' \) enforce vertices to be mapped to distinct vertices in \(G' \)

\(\Rightarrow H \) is subgraph isomorphic to \(G \) iff there exists a homomorphism from \(H' \) into \(G' \)
Injective Homomorphism

Graph homomorphism:

Subgraph isomorphism can be reduced to homomorphism:
Injective Homomorphism

Graph homomorphism:

Subgraph isomorphism can be reduced to homomorphism:

- Color all edges of H and G in blue (original edges)

⇒ H is subgraph isomorphic to G iff there exists a homomorphism from H' into G'.
Injective Homomorphism

Graph homomorphism:

Subgraph isomorphism can be reduced to homomorphism:

- Color all edges of H and G in blue (original edges)
- Add to H red edges between all *unconnected* vertex pairs (constraint edges)
Injective Homomorphism

Graph homomorphism:

Subgraph isomorphism can be reduced to homomorphism:

- Color all edges of H and G in blue (original edges)
- Add to H red edges between all *unconnected* vertex pairs (constraint edges)
- Connect *all* vertex pairs in G by a red edge
Injective Homomorphism

Graph homomorphism:

Subgraph isomorphism can be reduced to homomorphism:

- Color all edges of H and G in blue (original edges)
- Add to H red edges between all unconnected vertex pairs (constraint edges)
- Connect all vertex pairs in G by a red edge

Red edges in H' enforce vertices to be mapped to distinct vertices in G'
Injective Homomorphism

Graph homomorphism:

Subgraph isomorphism can be reduced to homomorphism:

- Color all edges of H and G in blue (original edges)
- Add to H red edges between all unconnected vertex pairs (constraint edges)
- Connect all vertex pairs in G by a red edge

Red edges in H' enforce vertices to be mapped to distinct vertices in G'

\Rightarrow H is subgraph isomorphic to G iff there exists a homomorphism from H' into G'
Partially injective homomorphism requires injectivity constraints for only a subset of vertex pairs in the pattern
Partially injective homomorphism requires injectivity constraints for only a subset of vertex pairs in the pattern

- i.e. add to H only a selection of red edges
Partially injective homomorphism requires injectivity constraints for only a subset of vertex pairs in the pattern

- i.e. add to H only a selection of red edges
Partially injective homomorphism requires injectivity constraints for only a subset of vertex pairs in the pattern

- i.e. add to H only a selection of red edges

H'': G':

v_2 and v_4 of H'' must be mapped to distinct vertices in G'
Partially injective homomorphism requires injectivity constraints for only a subset of vertex pairs in the pattern

- i.e. add to H only a selection of red edges

v_2 and v_4 of H'' must be mapped to distinct vertices in G'

Partially injective homomorphism can be decided in polynomial time if the pattern graph (blue + red edges) has bounded tree width.
Our approach

Generate *frequent trees* w.r.t. partially injective homomorphism
Our approach

Generate *frequent trees* w.r.t. partially injective homomorphism

- i.e. blue edges form a tree
Our approach

Generate *frequent trees* w.r.t. partially injective homomorphism

- i.e. blue edges form a tree
- and blue + red edges form a graph of bounded tree-width
Generate *frequent trees w.r.t.* partially injective homomorphism

- i.e. blue edges form a tree
- and blue + red edges form a graph of bounded tree-width
Our approach

Generate frequent trees w.r.t. partially injective homomorphism
 - i.e. blue edges form a tree
 - and blue + red edges form a graph of bounded tree-width

Mining algorithm: levelwise search
Our approach

Generate *frequent trees* w.r.t. partially injective homomorphism

- i.e. blue edges form a tree
- and blue + red edges form a graph of bounded tree-width

Mining algorithm: levelwise search

Technical issues: only a subset of patterns is kept
Refinement Operator

The refinement operator utilizes the algorithmic definition of k-trees.

Refinement step:
1. Select a 2-clique
2. Add a vertex and connect it to the 2-clique
3. Color one edge blue
4. Color all others red

G' is a refinement of G. Both graphs have tree-width 2.

Properties:
- Graphs are maximally constrained (i.e. adding another red edge increases the tree-width).
- The embedding decision problem is guaranteed to lie in P.

Schulz et al. (Bonn)

Partially Injective Homomorphisms
The refinement operator utilizes the algorithmic definition of k-trees

Refinement step:

1. Select a 2-clique
2. Add a vertex and connect it to the 2-clique
3. Color one edge blue
4. Color all others red

G' is a refinement of G. Both graphs have tree-width 2.

Properties:
- Graphs are maximally constrained (i.e. adding another red edge increases the tree-width)
- The embedding decision problem is guaranteed to lie in P
Refinement Operator

The refinement operator utilizes the algorithmic definition of k-trees

Refinement step:

1. Select a 2-clique
2. Add a vertex and connect it to the 2-clique
3. Color one edge blue
4. Color all others red

G' is a refinement of G. Both graphs have tree-width 2.

Properties:
- Graphs are maximally constrained (i.e. adding another red edge increases the tree-width)
- The embedding decision problem is guaranteed to lie in P

Schulz et al. (Bonn)
The refinement operator utilizes the algorithmic definition of k-trees

Refinement step:

1. select a 2-clique
2. add a vertex and connect it to the 2-clique

G' is a refinement of G. Both graphs have tree-width 2.

Properties:
- graphs are maximally constrained (i.e. adding another red edge increases the tree-width)
- the embedding decision problem is guaranteed to lie in P
The refinement operator utilizes the algorithmic definition of k-trees

Refinement step:

1. Select a 2-clique
2. Add a vertex and connect it to the 2-clique
3. Color one edge blue

G' is a refinement of G. Both graphs have tree-width 2.

Properties:
- Graphs are maximally constrained (i.e. adding another red edge increases the tree-width)
- The embedding decision problem is guaranteed to lie in P
Refinement Operator

The refinement operator utilizes the algorithmic definition of k-trees

Refinement step:

1. select a 2-clique
2. add a vertex and connect it to the 2-clique
3. color one edge blue
4. color all others red

G' is a refinement of G. Both graphs have tree-width 2.

Properties:

- Graphs are maximally constrained (i.e. adding another red edge increases the tree-width)
- The embedding decision problem is guaranteed to lie in P
The refinement operator utilizes the algorithmic definition of k-trees

Refinement step:

1. Select a 2-clique
2. Add a vertex and connect it to the 2-clique
3. Color one edge blue
4. Color all others red

G' is a refinement of G. Both graphs have tree-width 2.
The refinement operator utilizes the algorithmic definition of k-trees

Refinement step:

1. Select a 2-clique
2. Add a vertex and connect it to the 2-clique
3. Color one edge blue
4. Color all others red

G' is a refinement of G. Both graphs have tree-width 2.

Properties:
- Graphs are maximally constrained (i.e. adding another red edge increases the tree-width)
The refinement operator utilizes the algorithmic definition of k-trees

Refinement step:

1. Select a 2-clique
2. Add a vertex and connect it to the 2-clique
3. Color one edge blue
4. Color all others red

G' is a refinement of G. Both graphs have tree-width 2.

Properties:
- Graphs are *maximally* constrained (i.e. adding another red edge increases the tree-width)
- The embedding decision problem is guaranteed to lie in P
Table: Prediction measures stated as AUC values in % \((k:\text{ tree-width}; \text{s.g.i.: subgraph isomorphism}; \text{p.i.h.: partially injective homomorphism})\)
Experiments

| Dataset | Frequent Patterns | $|E| = 4$ | $|E| = 5$ | $|E| = 6$ | $|E| = 7$ | $|E| = 8$ |
|-----------|------------------|--------|--------|--------|--------|--------|
| NCI1 | s.g.i. graphs | 79.30 | 84.36 | 86.48 | 87.17 | 87.18 |
| | s.g.i. trees | 79.30 | 84.10 | 86.16 | 86.83 | 86.92 |
| | p.i.h. trees ($k = 2$) | 78.94 | 83.18 | 85.02 | 85.41 | 86.07 |
| | p.i.h. trees ($k = 3$) | 80.51 | 84.53 | 85.83 | 86.64 | 86.68 |
| | p.i.h. trees ($k = 4$) | 79.30 | 84.66 | 86.02 | 86.39 | 86.11 |

Table: Prediction measures stated as AUC values in % (k: tree-width; s.g.i.: subgraph isomorphism; p.i.h.: partially injective homomorphism)
Conclusion

Partially Injective Homomorphisms:

- can be decided in polynomial time (for this work)
Conclusion

Partially Injective Homomorphisms:
- can be decided in polynomial time (for this work)
- achieve prediction performance close to traditional frequent subgraphs
Conclusion

Partially Injective Homomorphisms:
- can be decided in polynomial time (for this work)
- achieve prediction performance close to traditional frequent subgraphs
- can be generalized to first-order logic:
Conclusion

Partially Injective Homomorphisms:
- can be decided in polynomial time (for this work)
- achieve prediction performance close to traditional frequent subgraphs
- can be generalized to first-order logic:

```
<table>
<thead>
<tr>
<th>Homomorphism between Relational Structures</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILP: Θ-Subsumption</td>
</tr>
<tr>
<td>Special Case: Graphs</td>
</tr>
<tr>
<td>Homomorphism between Graphs</td>
</tr>
</tbody>
</table>
  ☀: polynomially decidable for many graph classes
  ☺: poor predictive performance

The Two Most Common Pattern Matching Operators in Learning from Structured Data

- Substructure Isomorphism between Relational Structures
- Graph Mining: Subgraph Isomorphism
  - Partially Injective Homomorphism
    ☀: better predictive performance
    ☺: generally NP-complete
```
Appendix
A **homomorphism** from a graph H (the *pattern*) into a graph G (the *text*) is a mapping $\varphi : V(H) \to V(G)$ that preserves the edges (i.e., $uv \in E(H)$ implies $\varphi(u)\varphi(v) \in E(G)$ for all $u, v \in V(H)$).

Example:

![Diagram of homomorphism](image)

A **subgraph isomorphism** from H to G is an *injective* homomorphism $\psi : V(H) \to V(G)$ (i.e. ψ is a homomorphism from H into G and for all $u, v \in V(H)$ with $u \neq v$ holds $\psi(u) \neq \psi(v)$).

Example:

![Diagram of subgraph isomorphism](image)
A \textbf{tree decomposition} of a graph $G = (V, E)$ is a pair $TD(G) = (T, X)$ where
- $T = (I, F)$ is an unordered tree,
- $X = \{bag(i) : i \in I\}$ is a family of subsets of V, s.t.
 (i) $\bigcup_{i \in I} bag(i) = V$
 (ii) for every $\{u, v\} \in E$ there is an $i \in I$ with $\{u, v\} \subseteq bag(i)$
 (iii) for every $v \in V$ the set of nodes $\{i \mid v \in bag(i)\}$ forms a subtree of T

The \textbf{width} of $TD(G)$ is $\max_i |bag(i)| - 1$

The \textbf{tree-width} of G is the minimum width over all tree decompositions of G

Example:

$TD(G)$ has a width of 2 which is also the tree-width of G.
Algorithmic definition of **k-trees:**

(i) A clique of \(k + 1 \) vertices is a \(k \)-tree and

(ii) given a \(k \)-tree \(T_k \) with \(n \) vertices, a \(k \)-tree with \(n + 1 \) vertices is obtained from \(T_k \) by adding a new vertex \(v \) to \(T_k \) and connecting \(v \) to all vertices of a \(k \)-clique of \(T_k \).

Properties:

- A \(k \)-tree has tree-width \(k \)
- Adding an edge to a \(k - tree \) results in a graph of tree-width \(k + 1 \).
Refinement Operator

Refinement step:

1. select a 2-clique
2. add a vertex and connect it to the 2-clique
3. color one edge blue
4. color all others red

G' is a refinement of G. Both graphs are k-trees with $k = 2$.

Properties:
- graphs are *maximally* constrained (i.e. adding another red edge increases the tree-width)
- the embedding decision problem is guaranteed to lie in P
Partially Injective Homomorphisms can be generalized to first-order logic:

Let A and B be function-free first-order clauses. A **partial substructure isomorphism** from A to B satisfying the injectivity constraints in $C \subseteq [\text{Var}(A)]^2$ is a substitution θ such that $A\theta \subseteq B$ and for all $xy \in C$, $x\theta \neq y\theta$.

Example:

\[A = \{P(x_2, x_1), P(x_3, x_1), P(x_4, x_1)\} \]
\[B = \{P(a_1, a_2), P(a_3, a_2)\} \]
\[C = \{x_3x_2, x_4x_2\} \]

There is a partial substructure isomorphism from A to B w.r.t. constraints C iff A' subsumes B'.