LEARNING LOGIC PROGRAM REPRESENTATION FOR DELAYED SYSTEMS WITH LIMITED TRAINING DATA

Yin Jun Phua, Tony Ribeiro, Sophie Tourret, and Katsumi Inoue

Tokyo Institute of Technology, Japan
National Institute of Informatics, Japan
Laboratoire des Sciences du Numérique de Nantes, France
\[p \leftarrow q \]
\[q \leftarrow p \land r \]
\[r \leftarrow \neg p \]

[Inoue et al. 2014]
DEALING WITH BIOLOGICAL DATA

- Data are often difficult/expensive to obtain
- Too little data point with respect to the number of variables
- Data are often noisy
- Biological effects often take time to manifest, so delay should be considered
CURRENT ALGORITHMS

- **Logical method** [Inoue et al. 2014], [Ribeiro et al. 2014], [Ribeiro et al. 2015]
 - Produces NLP as output
 - Difficult to apply to small amount of data
 - Cannot deal with noisy data

- **Neural network** [Gentet et al. 2016]
 - Separate algorithm to obtain NLP
 - Applicable to small amount of data
 - Do not deal with delay
Ideally...

1. Can apply to small amount of data
2. Can deal with delay
3. Can deal with noisy data
4. Can output NLP directly
5. Can compute fast
PROPOSED MODEL

Logic Program Representation

Encoded Past States

State decoding MLP

x_t

x_{t+1}

p_0

LSTM

x_1

x_2

x_t

...
LSTM

- Long Short-Term Memory (LSTM) is a form of Recurrent Neural Network
- Can learn long-term dependencies, and do not suffer from vanishing gradient problem
- Popular in many sequence-to-sequence mapping tasks such as machine translation
- LFIT can be viewed as mapping a sequence of state transitions to the correct logic program
3 gates in the memory cell controls the internal state
In our model, two LSTMs used:
1. Autoencoder for state transitions
2. For performing LFIT

Logic Program Representation
Encoded Past States
State decoding MLP

LSTM

\[x_t \times p_0 \]

\[h_t \]

output gate
input gate
forget gate
MLP

- Multi-layer Perceptron is a class of feed-forward neural network
- Aside from the input nodes, each layer is activated by rectified linear units
- In our model, we used an MLP with 2 hidden layers, each with 32 units
1. Randomly generate NLPs
2. Randomly initialize the state and generate time series
3. Train model on randomly generated data until model converges
PROPOSED MODEL

\[\times \]

Logic Program Representation

Encoded Past States

State decoding MLP

LSTM

...
EVALUATION

1. Accuracy of the prediction
2. Quality of the learned NLP representation
EXPERIMENT SETTING

1. Created an artificial boolean network based on mammalian cell cycle
2. Initialized with random initial state, and a time series is generated from the initial state
3. Noise are added randomly to the time series
4. The model is then used to attempt to recover the time series from several initial values
<table>
<thead>
<tr>
<th>Dataset</th>
<th>MSE (Original)</th>
<th>MSE (Noisy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.14</td>
<td>0.20</td>
</tr>
<tr>
<td>2</td>
<td>0.19</td>
<td>0.20</td>
</tr>
<tr>
<td>3</td>
<td>0.20</td>
<td>0.15</td>
</tr>
<tr>
<td>4</td>
<td>0.19</td>
<td>0.14</td>
</tr>
<tr>
<td>5</td>
<td>0.19</td>
<td>0.20</td>
</tr>
</tbody>
</table>
QUALITY
QUESTIONS RECEIVED (1)

• How is this a classification task and what are the competing models?

A: In a sense this model is trying to classify a series of state transition with the corresponding logic program that can explain it. Currently there are no competing models.
QUESTIONs RECEIVED (2)

• There are no comparison between smaller dataset and larger dataset?

A: No experiments were done on this. Logical methods require every single possible transition compared to neural network methods which require less amount of data than that.
CONCLUSION

• Contribution:
 ▪ Proposed a method for learning from small amount of data
 ▪ Proposed a method that utilizes neural network and can learn from transitions in delayed setting

• Future work:
 ▪ Input partial logic program as background knowledge
 ▪ Extract normal logic program from the learned program representation