Adaptive Incremental Learning for Statistical Relational Models Using Gradient-Based Boosting

Yulong Gu and Paolo Missier

Presenter: Yulong Gu
School of Computing, Newcastle University UK
Outline

• Background
 • Relational Functional Gradient Boosting (RFGB)
 • Top-down Induction of first-order logical decision trees (TILDE)
 • Concept-Adapting Very Fast Decision Tree (CVFDT)

• Hoeffding Relational Regression Tree (HRRT)

• Rule Stability Metric for CVFDT

• Relational Incremental Boosting (RIB)

• Relational Boosted Forest (RBF)
Problem

Supervised Learning with dataset that:

• *Incomplete* – contains missing values
• *Imbalanced* – #negative instances far outnumber #positive instances
• *Large-Scale* – more cost-efficient to update than re-building model
• *Evolving* – concept drifts
• *Multi-relational* – objects are connected in meaningful way
Solution System Design

Data-driven Model

- Statistical Relational Model
 - Relational Dependency Network
 - Markov Logic Network

- Relational Functional Gradient Boosting Framework
 - Relational Soft Margin Approach
 - Adaptive Incremental Learning
 - Structural Expectation Maximization

Data Properties:
1. Multi-relational
2. Imbalanced
3. Large-scale
4. Evolving
5. Incomplete
Relational Functional Gradient Boosting

Want to build a statistical relational model out of these predicates?

Learn a RRT for each predicate encoding both dependencies and parameters

Relational Regression Tree

Learn multiple weak models rather than a single complex model

Hoeffding Relational Regression Tree (HRRT)

Incrementally learn Relational Regression Tree?

Learn a relational regression tree? **TILDE**
- allows conjunction of predicates
- extensions allow conjunctions of recursive and aggregated predicates

Learn regression tree incrementally? **CVFDT**
- Learn predicate at node with fraction of streaming data
- concept-adapting

= **HRRT**
Hoeffding Relational Regression Tree (HRRT)

Hoeffding Bound:
- With desired confidence, the upper bound of the difference between the true mean and observed mean of a random variable is dependent on the number of observations.

Example:
After update of SS, the node has seen 100 examples, with 99% certainty, the difference between the true \(\text{Avg}(\text{Eval(Distinction)} - \text{Eval(Startup)}) \) and observed one is less than pre-defined \(\epsilon \), HB satisfied, split.
Hoeffding Relational Regression Tree (HRRT)

How does CVFDT adapt to concept drift?

- Maintain a set of alternative subtrees for each node with different predicates than the original one.
- Periodically check HB at each node, if failed, then add new subtree to its subtree set with the best predicate at the moment.
- Once one of the subtree outperforms the original one, the winning subtree will replace the original subtree and discard the original subtree entirely.

CVFDT with alternative subtree
Hoeffding Relational Regression Tree (HRRT)

Why is CVFDT not good enough?

- Less Responsive - new concept will need many counter-examples to invalidate old concept
- Larger prediction variance – old concepts are entirely discarded based on relatively small amount of data
- Hard to maintain and analyse – one single complex model

Ensemble Methods for Relational Adaptive Incremental Learning

Ensemble Method for Concept Drift:
- Boosting, Bagging, Weighted Majority...
- Train multiple weak models to represent conflicting rules.
- Each weak model contributes to the final prediction.

Boosting:
\[P(Y = True|Pa(Y)) = \alpha A + \beta D, \alpha = \beta = 1 \]

Weighted Majority:
\[P(Y = True|Pa(Y)) = \alpha A + \beta D \]
Rule Stability Metric

Definition 1.

- Define the Rule Stability of a model as \(n \), the size of the smallest change in sample \(D \) that may cause new rule \(r' \) to become superior to working rule \(r \). In following equation, \(D' \) is \(D \) after change:

\[
\text{Learner} : (\text{Diff} (D,D') = n,r) \rightarrow r' \quad (1)
\]

When we apply the Rule stability to a tree trained with HRRT, we can prove that:

- With confidence \(1 - \delta \), the size of the smallest change that may cause \(r' \) to become superior to \(r \) is:

\[
\text{Tolerance} = \Delta \tilde{G}_{X_aX_b} - \epsilon \quad (2)
\]

- \(\Delta \tilde{G}_{X_aX_b} \) is the average of the difference between the scores of test \(X_a \) and \(X_b \) evaluated by splitting function \(G(X_i) \), and \(\epsilon \) is the parameter obtained from the Hoeffding inequality given \(n \) and a desired confidence \(\delta \).

- The Tolerance measures the rule stability of an inner node, and we define:

\[
\text{TreeTol} = \sum_{\text{node}=0}^{N} \text{nodeTolerance} \quad (3)
\]

- as the stability of the tree.
Established Rules

Combine HRRT and Rule Stability to enable Ensemble Methods to handle Concept Drift:

- When is the weak model good enough to represent current rules?
 - It passes the rule stability check with current sliding window data and
 - It got boosted using current sliding window data

Established Rules:

We will boost an initial HRRT when it is stable so that the objective functional is best optimised for the current sliding window data and the stable rules are transformed into established rules.

\[
\psi_m = \psi_0 + \Delta_1 + \cdots + \Delta_m
\]
Relational Incremental Boosting

\[P(Y = True | Pa(Y)) = A_0 + A_1 + \cdots + A_n \]
Relational Incremental Boosting

Evaluation Centre for RIB
- Monitor global performance
- Strong consistence to Training data over time
- Set S to False to stop executing boosting until the performance drops
- Monitor contribution to error of each FGT
- Discard poorly performing FGTs over time

No Concept Drift

Complexity

Algorithm 1 Relational Incremental Boosting

1. procedure RIB($DataStream, p$)
2. Initialize empty tree ψ and η
3. for each d in $DataStream$ do
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14. end procedure

- After every p examples do $\{\psi, S\} \leftarrow \text{EvalCentre}(\psi, d)$
- if ψ.boosted then $\eta \leftarrow \text{HRRT}(\eta, \text{GradExpGen}(\psi, d))$
- if $\text{StabilityCheck}(\eta)$ and S then $\psi \leftarrow \text{Boosting}(\eta + \psi)$ and reset η
- end if
- else $\psi \leftarrow \text{HRRT}(\psi, d)$
- if $\text{StabilityCheck}(\psi)$ then $\psi \leftarrow \text{Boosting}(\psi), \psi$.boosted \leftarrow True
- end if
- end if
- end for
- return $(\psi + \eta)$
Relational Incremental Boosting Example

Assume $P(Y|Pa(Y)) = \text{Sig}(x)$ is a Sigmoid function, x is the regression value, Y in following examples is predicate ‘Work at fast food joint’.

Scenario at Time Point 1:
College and Distinction = less likely work at fast food joint in that fast food joint pays less competitive
$P(Y = \text{True}|\text{college, distinction}) = \text{Sig}(-0.2)$
$P(Y = \text{True}|\text{college, failed}) = \text{Sig}(0.8)$

Scenario at Time Point 2:
College and Failed = less likely work at fast food joint due to fast food joint pays extremely well over this period
$P(Y = \text{True}|\text{college, distinction}) = \text{Sig}(-0.2 + 1.0 = 0.8)$
$P(Y = \text{True}|\text{college, failed}) = \text{Sig}(0.8 - 1.6 = -0.8)$

Scenario at Time Point 3:
Own a Start-up and Profit more than N = less likely work at fast food joint due to tightening job market
$P(Y = \text{True}|\text{college, distinction}) = \text{Sig}(-0.2 + 1.0 - 0.5 = 0.3)$
$P(Y = \text{True}|\text{college, failed}) = \text{Sig}(0.8 - 1.6 - 0.5 = -1.2)$
$P(Y = \text{True}|\text{startup, profitmorethanN}) = \text{Sig}(0.5 + 0.5 - 1.8 = -0.8)$

The decomposability of ensemble methods allows direct event analysis of time series from the real-time incrementally learned model.
Relational Boosted Forest

\[P(Y = \text{True}|Pa(Y)) = \overline{\mathbf{W}} \cdot \mathbf{A}, \mathbf{W} = \{w_0, w_1, \ldots, w_n\}, \mathbf{A} = \{A_0, A_1, \ldots, A_n\} \]
Relational Boosted Forest

- The weights update strategy is inspired by Dynamic Weighted Majority (DWM).
- The weights are initialized to 1.
- When a boosted tree makes a mistake in a predictive attempt, the evaluation center will decrease its weight by certain proportion.

Algorithm 2 Relational Boosted Forest

1: procedure \(\text{RBF}(\text{DataStream}, p) \)
2: Initialize empty \(\text{Forest} \) & \(\text{Weights} \), empty tree \(\psi \) and \(w \leftarrow 1 \)
3: for each \(d \) in \(\text{DataStream} \) do
4: After every \(p \) examples do
5: \{Forest, Weights, S\} \leftarrow \text{EvalCentre}(\text{Forest}, \text{Weights}, d) \)
6: \(\psi \leftarrow \text{HRRT}(\psi, d) \)
7: if StabilityCheck(\(\psi \)) and \(S \) then \(\psi \leftarrow \text{Boosting}(\psi) \)
8: Add \(\psi \) to Forest, \(w \) to Weights and reset \(\psi \), \(w \leftarrow 1 \)
9: end if
10: end for
11: return \{Forest, Weights\}
12: end procedure

Conclusion

• We have proposed three adaptive incremental learning algorithms:
 • Hoeffding Relational Regression Tree (HRRT)
 • Relational Incremental Boosting (RIB)
 • Relational Boosted Forest (RBF)

• All three algorithms can incrementally and adaptively learn the parameters and structure simultaneously for SRL models such as MLNs and RDNs.

• The RIB and RBF extend the classical ensemble methods to relational scenario for handling the concept drifts.

• All three algorithms are compatible with existing RFGB-based algorithms such as Structural EM and Soft Margin Approach. The combination of these extensions allow us to learn a model from a incomplete, imbalanced, large-scale and evolving multi-relational dataset in an incremental manner.
References

